Team 25
Team Members: ConnorSullivan, Amith Panuganti, Griffin Keeter, Derrick Quinn, JunyiZhao

Project Name: ML For Everyone

Project Synopsis:

A web-based application that abstracts the technical details of machine learning away from the user to
allow anyone to leverage the power of ML.

Architecture:

Overview:
GUI Frontend
Backend Auth Key
Backend
User Data
User Authenticator (Firebase)
Make AP Call User Database (Firebase)
Login

- Stored Models

React Frontend ML Engine (GCE)

API Handler (GCE)

CLI Frontend

Handle API Call (GCE)

Backend Auth Key

Handle Auth Request (Firebase)

User Data

Make API Call

Login

Python Frontend

The overall architecture is straightforward: we will constructa backend, unifying Google Compute
Engine and Firebase with our two front-end implementations: one with a graphical userinterface in
React.JS, and one as a python-based API. Both frontends will hold authentication information, as well as
implement a way to make calls to the backend forlogin or Compute Engine tasks. Additionally, they will
hold basic userdata for easy access to thatinformation. The unified backend will use GCE to implement
an APl handler, as well as build the models, and use Firebase to handle authentication and our user+
modeldatabase. There will be two ways to interact with the backend: making authentication requeststo
Firebase and making Compute Engine APl calls to GCEfor everything else (training models, retrieving

models, evaluating models on given points) and the implementation of all of this will be handled within
the backend.

Gui Frontend:

User

Login Info (ID and Password) GUI Frontend
Session ID - Receive user info and
User Info B auth key back from
Email Address Backend Auth Key i Auth Request
Login — —————» Firebase Auth Request
Upload Data (CSV File) T ——— % DB Write Call (ACK on success) See Backend

Yy

Diagrams

Train Model with Data | | APICallto GCE(ACK on completion)
(option after data upload)

Get Model from DB (recieve

serialized model, make available
Download Model to user for download)

{option after training)

The GUIfrontend will be a simple, multi-tab page that places functionality first and will allow eventhe
mostinexperienced users to upload data and get a trained model back from the backend portion of the
application. This component will be the simplest way to interact with the backend portion of the
application, whereas the CLI frontend will be bettersuited for powerusers. It will be built using React as
the visual frontend and will interact with both the APl (for GCE needs) and with Firebase (for
authentication and storage needs). Users will be able to login through the frontend, which will then
make an authorization request APl call to the Firebase backend. Once the frontend hasreceived the
data back from Firebase, it will store that data for the length of the user’s session. Through the frontend,
the userwill be able to upload data, which can be storedin Firebase, and use the uploaded datato train
models, which will be done through API calls to GCE. Once the trained modelis handed off to Firebase
from GCE, the usercan interact with the frontend to make a call to Firebase to download the trained
modelfor their personaluse. Users can use the frontend to make calls to the database to store both
their uploaded dataand the trained modelthat was given to them after GCE processed the data. This
portion of the frontend will also provide sections for the userto easily view metrics about their model.

CLI Frontend:

Google Cloud Compute Engine Python Environment Python Module Firebase Database

User enters login i

Authorization Key

A J

|
User enters command to view |
models

-

” Cuery to firebase (using key) N
»

ion about user-saved models returned

User saved models are listed

FY

User uploads training data N

>
User enters command to train model
>

Call made to train model

=l

Request for model information

¥

-

Model information

Training Model information in
is updated N

T L

F

- i
-+ ;
Model i ion given back to module

Results of training displayed

The Python command line interface module will allow usersto interact with models they have created,
or to create new models. We will provide an APl for making calls to the database and the Cloud
Compute Engine. We will make this part of the frontend available as a python module which can be
downloaded fromthe webpage, so users canimport the module in a python environment and then call
the functions defined in it on a command line or whateverotherenvironment they choose. The module
will be downloadable as python files. Once a user enters their user information, they will be able to
access the database which will hold information like user settings and saved models. Like the webpage
frontend, it will store an authorization key from Firebase. Firebase will provide the key whenthe user
first logs in, then wheneverthe user makes a query to the database the key will be used to authorize the
transaction. They will be able to enter commands using our team's APIto run, train or design machine
learning models like they would be able to on the webpage. There willbe functions which allow usersto
create individual layers in a machine learning model, choose activation functions and optimizing
functions. The usershould have control over how to organize the training data they provide and how it
is usedto testthe model, as wellas how the modelis tested. The APl will support differentfiletypes
containing the training data, like .csv files or directories. The user would be able to view the output of
models and view what models they have built. The userwould also be able to upload training data to
the Cloud Compute Engine to test their models and download models once they are trained.

Google Cloud Compute Engine:

The software uses Google cloud Compute Engine to train machine learning models. The Google Cloud
Compute Engine can train models faster by using multiple GPUS and CPUs on a remote server. The
Google Cloud Compute will utilize a Python file or Jupiter Notebook to handle both the construction and

training of the model. The following activity diagram represents the flow of the component, from input
to output:

Inputs:; Features and labels,
model structure, hyper
parameters

Create model based

Old
on inputted model —New—ew or old model? —> Load model

Add loss, optimizer, ‘
nd hyper par

to train function
Train model and

record metrics

Yes

yper paramete
Turning?

Mo
¥

Store model in
Firebase

¥

Output model and
metrics to frontend

In the beginning, this component will receive the following inputs: the features and labels, the loss and
optimizerfunctions, hyperparameters, and the modelitself. Next, the program depends on how to load
the modelinto the program. If the modelalready exists, the component will load the model from
Firebase. If the modeldoesn’t exist, then the program constructs a new modelbased on the userinput
model. How the modelis constructed will depend on the machine learning library, its layers, and how it
is organized. Once the modelis constructed or loaded, we then set the loss, optimizer, and
hyperparametersforthe training function. Next, the component will train the modelusing the CPUs and
GPUs over multiple epochs. Metrics about the model, including its loss and accuracy, will be recorded
for each epoch. Afterward, the program can tune the hyperparameters and retrain the modelto
improve the model. Finally, the model will be stored in Firebase, and it and the metrics will be presented
to the userin the frontend.

Unified Backend:

Firebase

Authentication Handler

Model datahase

Login

Backend Access database
Firebase
Compute engine
Handle Auth request]
Google Compute Engine
Handle API Call
API handler
ML engine
Predict points (api call)
Train model (api call)
Save model (api call)

The unified backend will contain Firebase for handling authentication as well as the database of models,
and Google Compute Engine which will handle all processing of model-related calls. The calls themselves
will be handled by an API call handler within Google Compute Engine and all machine learning will be
handled by an ML engine running within the Compute Engine as well. The only calls handled directly by
firebase will be forauthentication, everything else will be handled via standardized APl calls to the
Compute Engine in orderto simplify the backend.

